Difference between revisions of "Ecfd:ecfd 3rd edition"
(→Project #9: Remeshed particle method at high Schmidt and Reynolds number) |
(→Project #9: Remeshed particle method at high Schmidt and Reynolds number) |
||
Line 44: | Line 44: | ||
=== Project #9: Remeshed particle method at high Schmidt and Reynolds number === | === Project #9: Remeshed particle method at high Schmidt and Reynolds number === | ||
− | ''S. Santoso (LJK), J.-B. Lagaert (Math Orsay), | + | ''S. Santoso (LJK), J.-B. Lagaert (Math Orsay), G.Balarac (LEGI)'' |
We study the advection of a scalar function in turbulent flows with a multimesh method. The finite volume method is used to solve Navier-Stokes equations on an unstructured mesh (YALES2). The advection equation is solved with remeshed particle method on a cartesian mesh. In the context of parallel computing, we face a very unbalanced problem since a large number of particles are created in a very fine meshed zone. Our strategy to load-balance the problem is to give a weight to every element group which is equal to the density of particle. | We study the advection of a scalar function in turbulent flows with a multimesh method. The finite volume method is used to solve Navier-Stokes equations on an unstructured mesh (YALES2). The advection equation is solved with remeshed particle method on a cartesian mesh. In the context of parallel computing, we face a very unbalanced problem since a large number of particles are created in a very fine meshed zone. Our strategy to load-balance the problem is to give a weight to every element group which is equal to the density of particle. |
Revision as of 01:36, 31 January 2020
ECFD workshop, 3rd edition, 2020
Contents
- 1 Sponsors
- 2 Participants
- 3 Flyer
- 4 Presentations
- 5 Project achievements
- 5.1 Project #1: Hackathon GENCI/ATOS/AMD/CERFACS on AVBP
- 5.2 Project #2: Hackathon GENCI/ATOS/AMD/CERFACS on YALES2
- 5.3 Project #3: Développement d’injecteurs lagrangiens dans YALES2
- 5.4 Project #4: Application to combustion and lubrication applications
- 5.5 Project #5: Jet-in-crossflow par une méthode d’interface diffuse
- 5.6 Project #6: Accurate numerical prediction of vortical flows using AMR
- 5.7 Project #7: Modélisation de parois pour la simulation des grandes échelles
- 5.8 Project #8: Implémentation du calcul de la distance à une interface liquide-gaz proche d’une paroi sur maillage non structuré 3D avec YALES2
- 5.9 Project #9: Remeshed particle method at high Schmidt and Reynolds number
- 5.10 Project #10: Remaillage dynamique pour la combustion turbulente prémélangée
- 5.11 Project #11: Multiphysics coupling for wind turbine wake modeling
- 5.12 Project #12: Stability of a semi-implicit compressible cavitation solver
- 5.13 Project #13: DNS of droplet dynamics and evaporation : comparison between structured and unstructured solvers
- 5.14 Project #14: Méthode d'ordre élevé
- 5.15 Project #15: Utilisation d’éléments finis du second ordre dans le SMS
- 5.16 Project #16: Development of a RANS solver in YALES2
- 5.17 Project #17: COUPLING OF A FLUID PLASMA SOLVER WITH A LAGRANGIAN SOLVER FOR THE MODELING OF DUSTY
- 5.18 Project #18: L’Evaporo O Maıtre
- 5.19 Project #19: The Clone Wars
- 5.20 Project #20: simulation de jet de plasma
- 5.21 Project #21: AVBP Dense Gases
- 5.22 Project #22: Numerical prediction of wind turbine wakes using AMR
Sponsors
Participants
Flyer
Presentations
Project achievements
Project #1: Hackathon GENCI/ATOS/AMD/CERFACS on AVBP
C. Piechurski (GENCI), S. Jauré (ATOS), P.-A. Harraud (AMD), P. Mohanamuraly (CERFACS), G. Staffelbach (CERFACS)
Project #2: Hackathon GENCI/ATOS/AMD/CERFACS on YALES2
Project #3: Développement d’injecteurs lagrangiens dans YALES2
Project #4: Application to combustion and lubrication applications
Project #5: Jet-in-crossflow par une méthode d’interface diffuse
Project #6: Accurate numerical prediction of vortical flows using AMR
Project #7: Modélisation de parois pour la simulation des grandes échelles
Project #8: Implémentation du calcul de la distance à une interface liquide-gaz proche d’une paroi sur maillage non structuré 3D avec YALES2
Project #9: Remeshed particle method at high Schmidt and Reynolds number
S. Santoso (LJK), J.-B. Lagaert (Math Orsay), G.Balarac (LEGI)
We study the advection of a scalar function in turbulent flows with a multimesh method. The finite volume method is used to solve Navier-Stokes equations on an unstructured mesh (YALES2). The advection equation is solved with remeshed particle method on a cartesian mesh. In the context of parallel computing, we face a very unbalanced problem since a large number of particles are created in a very fine meshed zone. Our strategy to load-balance the problem is to give a weight to every element group which is equal to the density of particle.