Difference between revisions of "Ecfd:ecfd 3rd edition"

From Extreme CFD workshop
Jump to: navigation, search
(Project #9: Remeshed particle method at high Schmidt and Reynolds number)
(Project #1: Hackathon GENCI/ATOS/AMD/CERFACS on AVBP)
Line 26: Line 26:
 
=== Project #1: Hackathon GENCI/ATOS/AMD/CERFACS on AVBP ===
 
=== Project #1: Hackathon GENCI/ATOS/AMD/CERFACS on AVBP ===
  
''C. Piechurski, S. Jauré, P.-A. Harraud, P. Mohanamuraly, G. Staffelbach''
+
''C. Piechurski (GENCI), S. Jauré (ATOS), P.-A. Harraud (AMD), P. Mohanamuraly (CERFACS), G. Staffelbach (CERFACS)''
  
 
=== Project #2: Hackathon GENCI/ATOS/AMD/CERFACS on YALES2 ===
 
=== Project #2: Hackathon GENCI/ATOS/AMD/CERFACS on YALES2 ===

Revision as of 01:32, 31 January 2020

ECFD workshop, 3rd edition, 2020

Contents

Sponsors

Ecfd3 sponsors.png


Participants

Ecfd3 participants.png

Flyer

Presentations


Project achievements

Project #1: Hackathon GENCI/ATOS/AMD/CERFACS on AVBP

C. Piechurski (GENCI), S. Jauré (ATOS), P.-A. Harraud (AMD), P. Mohanamuraly (CERFACS), G. Staffelbach (CERFACS)

Project #2: Hackathon GENCI/ATOS/AMD/CERFACS on YALES2

Project #3: Développement d’injecteurs lagrangiens dans YALES2

Project #4: Application to combustion and lubrication applications

Project #5: Jet-in-crossflow par une méthode d’interface diffuse

Project #6: Accurate numerical predicti􏴇on of vorti􏴇cal flows using AMR

Project #7: Modélisation de parois pour la simulation des grandes échelles

Project #8: Implémentation du calcul de la distance à une interface liquide-gaz proche d’une paroi sur maillage non structuré 3D avec YALES2

Project #9: Remeshed particle method at high Schmidt and Reynolds number

S. Santoso (LJK), J.-B. Lagaert (Math Orsay), and G.Balarac (LEGI)

We study the advection of a scalar function in turbulent flows with a multimesh method. The finite volume method is used to solve Navier-Stokes equations on an unstructured mesh. The advection equation is solved with remeshed particle method on a cartesian mesh. In the context of parallel computing, we face a very unbalanced problem since a large number of particles are created in a very fine meshed zone. Our strategy to load-balance the problem is to give a weight to every element group which is equal to the density of particle.

Project #10: Remaillage dynamique pour la combustion turbulente prémélangée

Project #11: Multiphysics coupling for wind turbine wake modeling

Project #12: Stability of a semi-implicit compressible cavitation solver

Project #13: DNS of droplet dynamics and evaporation : comparison between structured and unstructured solvers

Project #14: Méthode d'ordre élevé

Project #15: Utilisation d’éléments finis du second ordre dans le SMS

Project #16: Development of a RANS solver in YALES2

Project #17: COUPLING OF A FLUID PLASMA SOLVER WITH A LAGRANGIAN SOLVER FOR THE MODELING OF DUSTY

Project #18: L’Evaporo O Maıtre

Project #19: The Clone Wars

Project #20: simulation de jet de plasma

Project #21: AVBP Dense Gases

Project #22: Numerical prediction of wind turbine wakes using AMR