
AVBP and YALES2 Portability, Tuning and Scalability on AMD

EPYC 7002 Rome Processors

Guillaume Balarac1, Patrick Bégou1, Gabriel Staffelbach2, Vincent Moureau3, Francesco
Gava3, Ghislain Lartigue3, and Christelle Piechurski4

1LEGI
2CERFACS, Toulouse, France

3CORIA, CNRS UMR6614, Normandie Université, UNIROUEN, INSA of Rouen, France
4GENCI

April 2020

Abstract

High-Performance Computing (HPC) has fostered innovation in a wide range of traditional
scientific domains for many years and in the last decade, became a state-of-the-art vehicle for high-
fidelity simulations of combustion dynamics on which aeronautics and automotive industries rely
on to improve their time-to-market solution as well as the quality of their products. The Exascale
perspective changes dramatically the picture and drives scientists to implement new methodologies
in their future algorithms to unlock large-scale numerical simulations on many-cores computing
architectures. Meanwhile, current Computational Fluid Dynamics (CFD) applications AVBP and
YALES2, must be optimized and fine-tuned to run efficiently on pre-Exascale nowadays technolo-
gies.

1 Introduction

The simulation of turbulent flows and more particularly turbulent flames is highly challenging. Even
if the governing equations of such flows, the Navier-Stokes equations, are well known and even if
many models exist, the high-fidelity simulation of turbulence and flames is still difficult. Indeed, in
these flows, a wide range of scales coexist, and supercomputers, though extremely helpful, are still not
powerful enough to enable the resolution of all these scales. In addition, another important aspect to
sort out is the complex geometry of the burners and aerodynamic devices encountered in applications.

To tackle these issues and exploit efficiently the current and future supercomputers, the French
CFD academic and industrial community participates to the development of two flow solvers: AVBP
and YALES2. They have in common the ability to deal with massive unstructured and hybrid grids.
While AVBP [10] targets mainly compressible flows, YALES2 [12, 11, 8] is focused on low-Mach number
flows. However, to share best practices and continue to propose the best-in-class performances to the
community, LEGI and CORIA have organized the third edition of the yearly Extreme Computational
Fluid Dynamics (ECFD) Workshop/hackathon at Autrans near Grenoble, France, in January 2020.
This 3rd international workshop gathered 50 researchers and engineers to share knowledge and focus
on algorithms optimization as well as new methodologies implementation with the ambitious target
to address and unlock some of the well foreseen technological Exascale stakes. One of this well-known
technological challenges is relative to the end of Moore’s law which lead to increase the core density
of computing units. While the many cores architecture was initially implemented only on accelerators
technology like the Knights Landing (KNL) from Intel R© or on GPU from nVIDIA, the many core
architecture have been democratizing also on General Purpose Computing Processing Unit for a few
years, reaching now 64 cores processors on the new x86 AMD Rome technology thanks to a MCP
(Multi-Chips module) implementation. This should become a standard in the next couple of years for

1

mostly all GPP (General Purpose Processor). This new context drives the CFD community to engage
strongly on those challenges, prepare itself for changes, define best-practices and share them, at least
for the 2 well-known CFD applications AVBP (CERFACS) and YALES2 (CORIA).

2 Overview of the CFD codes

The YALES2 and AVBP codes are widely used in the French academic combustion community as well
as in the aeronautical industry for the design of combustion chambers. Each code also has several
other fields of application: YALES2 is mostly dedicated to Low-Mach number flows while AVBP,
which is based on the full Navier-Stokes equations, is more suitable to study compressible flows and
thermo-acoustics instabilities. The following sections aim at giving more insights on each of these two
codes.

2.1 YALES2

The YALES2 code [12, 11, 8] is a massively parallel numerical toolbox on which many solvers have
been developed since 2009 to address various physical problems: incompressible flows, combustion,
two-phase flows, heat transfer, radiative transfer and much more. All these solvers benefit from
the underlying high-performance numerical library: highly-optimized linear solvers, automatic mesh
refinement, high-order Finite-Volume integration, parallel I/O, etc. These numerical methods are im-
plemented on unstructured meshes which enable to describe easily and efficiently complex geometries.
YALES2 is currently used by more than 300 persons both in academic and industrial sectors. The
library is composed of approximately 500’000 lines of Object-Oriented Fortran and its parallelism is
managed with the MPI approach. While an hybrid OpenMP-MPI version is under development, the
results provided in this white paper are only relative to the YALES2 MPI implementation. From a
numerical point-of-view, YALES2 relies on a Node-Centered Finite-Volume approach which naturally
guarantees the conservation of the transported quantities. It features various numerical methods, and
more particularly a 4th-order convection scheme [2] which is particularly well suited for the Large-
Eddy Simulation (LES) approach, as it can transport the eddies present in the flow over long distances
without damping them artificially.

The central part of the code is the Low-Mach number Navier-Stokes solver for constant density
flows which solves the following set of equations:

∇ · u = 0 (1)

∂u

∂t
+∇ · (u⊗ u) = −1

ρ
∇P +∇ · τ (2)

To do so, it relies on the classical projection method proposed by [?] to impose the divergence-
free constraint on the velocity, augmented with a recycling of the pressure at the previous timestep to
reduce the splitting errors. This method is composed of a first-step known as the prediction:

u? − un

∆t
+∇ · (un ⊗ un) = −1

ρ
∇Pn− 1

2 +∇ · τn (3)

followed by a second step known as the correction:

un+1 − u?

∆t
= −1

ρ
∇(Pn+ 1

2 − Pn− 1
2) (4)

In this last step, the pressure variation is obtained by solving a Poisson equation to enforce the
divergence-free constraint on the velocity:

∇ ·
(

1

ρ
∇(Pn+ 1

2 − Pn− 1
2)

)
=
∇ · u?

∆t
(5)

The discretization of this Poisson equation on a mesh will then provide a linear system in which the
unknowns are the pressure at each node of the mesh. This linear system can thus be extremely large

2

for real-life applications (the standard mesh size for 3D problems is now between 10M and 500M cells)
and can only be solved with dedicated methods, fitted for massively parallel environment. Even with
tens of years of R&D on linear solvers, solving the Poisson equation in turbulent flows still accounts for
most of the computation cost. Moreover, solving this linear system becomes harder and harder when
the mesh size and the number of CPU increases. The first reason is linked to the condition number of
the linear system which is actually a measure of the ratio between the largest and the smallest scale
in the problem. The other issue is related to the need to perform parallel operation to solve the linear
system. In YALES2, this system is solved with an Conjugate Gradient iterative solver which involves
one Matrix-Vector product and two dot products at each iteration. This implies one p2p (point-to-
point) communication and three all2all reductions at each iteration of the CG (an additional reduction
is needed to decide if the system is converged). The cost of these parallel operations increases when
more and more processors are used to solve the problem. A classical way to improve the performance
of the method, is to precondition the system. In YALES2, this preconditioning is based on a deflation
algorithm [8], which first solves the system on a coarser grid and then perform aback-projection of
this coarse residual on the fine mesh before performing a classical CG step. This coarse mesh is
obtained via a double domain decomposition technique: the full domain is first shared among all the
available cores and then each core performs another domain decomposition on its own mesh. Both
steps are performed sequentially with either the Metis [?] or Scotch [?] library. The second level
of decomposition provides a set of so-called cell-groups which contains a tunable number of elements
(usually of the order of 1’000). This technique has two main advantages:

• the coarse mesh is built from these cell-groups, which size determine the preconditioning ratio.

• all the data in the code are allocated on these cell-groups: the size of the arrays is thus limited
to a few kilo-bytes which is of key importance to fit in the lowest cache level of the cores.

2.2 AVBP

AVBP [10] is a 3D Navier-Stokes solver for compressible reactive two-phase flows developed by CER-
FACS since 1997. The code relies on an explicit resolution of the equations using the Large-Eddy Simu-
lation approach where the large structures are resolved and small scales are modeled. The LES models
available in AVBP are the Dynamic Smagorinsky [5], WALE[4] and SIGMA[13] models. In order to
handle such arbitrary grids, the data structure of AVBP employs a cell-vertex finite-volume formalism.
The numerical method is based on a Finite-Element low-dissipation Taylor-Galerkin discretization in
combination with a linear-preserving artificial viscosity model. AVBP was built for massively paral-
lel computations on unstructured grids. The code represents approximately 500’000 lines of Fortran
code with some C elements. Parallelism follows the single program multiple data approach is based
on domain decomposition using the Parmetis (http://glaros.dtc.umn.edu/gkhome/software) or
Ptscotch (https://gforge.inria.fr/projects/scotch/) libraries. Large input/output operations
are based on the Parallel HDF (https://www.hdfgroup.org/solutions/hdf5/) library with the pos-
sibility of having a flat (all processes) or hierarchical (one process out of N) I/O pattern depending
on the file system contention. On the fly post-processing algorithms allow for data extraction of iso-
surfaces and planes to reduce data output. The cell vertex approach uses cache blocking based on
groups of cells to reduce cache errors.

3 Presentation of the three tested architectures

3.1 SuperComputing Platforms

AVBP and YALES2 benchmarks’s results provided in Section 5 have all been obtained on GENCI
(Grand Equipement National du Calcul Intensif) supercomputing resources. GENCI is the French
National Agency in charge of providing High-Performance Computing, Artificial Intelligence and data
processing capabilities at national and European level to promote the use of intensive computing
associated with Artificial Intelligence for the benefit of French academic and industrial open research
communities, fostering and boosting researches for large scale scientific challenges. GENCI is funding 3

3

http://glaros.dtc.umn.edu/gkhome/software
https://gforge.inria.fr/projects/scotch/
https://www.hdfgroup.org/solutions/hdf5/

national supercomputers, each hosted and operated by its partners: Joliot-Curie (TGCC/CEA), Jean
Zay (IDRIS/CNRS) and Occigen (CINES/CPU).All benchmarks results introduced in this document
have been produced on the Joliot-Curie supercomputer for Intel R©Xeon R©Skylake and AMD EPYC
Rome processors and on the INTI prototype for Marvell R©ThunderX2 R©processor:
Joliot Curie Supercomputer is one of the 3 French supercomputing facilities, hosted in TGCC (Trés
Grand Centre de Calcul) and operated by the CEA (Commissariat à l’Energie Atomique). The machine
is currently built on top of 4 heterogeneous partitions (Intel R©Skylake, Intel R©KNL, AMD Rome,
nVIDIA R©V100 GPUs) capable to sustain both HPC and AI workloads with more than 22 PFLOP/s
peak performance. Its computing capabilities will grow by the end of 2020 with the first ARM partition
in production dedicated to the French research community, building the path to Exascale. The multi-
partitions machine access data thanks to a datacentric storage architecture based on an extremely
fast multi-layer Lustre File Systems with the level 1 reaching 500 GB/s to achieve IO data intensive
workloads. Joliot-Curie supercomputer‘s installation started in 2017. Its first phase based on Intel
Skylake and Intel KNL processors entered in production mid-2018 with resources embedded in the
Atos Bull Sequana X1000 open, modular and highly energy efficient Platform. The second phase
based on AMD Rome and nVIDIA GPUS relies on the X2000 Atos BullSequana platform and entered
in production in March 2020. As of interest, only the Intel Skylake and AMD Rome partitions will be
described below:

• The Intel Skylake partition contains 1 656 Skylake 8168 bi-sockets nodes (79,488 compute cores),
each with 192GB memory, all linked together through a Fat-tree topology 4x EDR (4x 25Gbps)
InfiniBand Mellanox network. It has a 6.86PF peak performance.

• The AMD Rome partition contains 2292 AMD EPYC Rome 7H12 bi-sockets node (293,376
compute cores) each with 256 GB DDR4 memory. The nodes are linked together through a
Dragonfly+ topology based on 4x HDR (4x 50Gbps) InfiniBand Mellanox network at switch
level. It has a 12.2 PFLOP/s peak performance.

All AMD benchmarks results introduced in this white paper have been produced thanks to the
TGCC/CEA & GENCI which provided 150,000 compute hours on the AMD Rome partition for a
duration of around one month.

ARM benchmarks have been run on the GENCI ARM INTI prototype resources, hosted and
operated by the CEA. Results were obtained mostly during the 3rd ARM hackathon organized by
GENCI’s Technology Watch Activity supported by ARM company. This prototype was opened to the
user’s community at the end of 2019 and its resources are now accessible via e-dari. It is equipped
with 30 dual-socket ThunderX2 nodes, each equipped 64 cores ARMv8 running at 2.2GHz and with
256 GB of memory interconnected through a 4X EDR Mellanox Infiniband network. Those nodes are
integrated into the Atos BullSequana X1000 platform.

3.2 AMD EPYC 7H12

The AMD EPYC 7002 Series Processors (Rome) is the second generation of the EPYC x86 platform.
Its implementation relies on Zen2 core architecture built on a 7 nm process technology and a multi-die
architecture to support up to 64 compute cores on a single SoC (System-On-chip), enhanced IO capa-
bilities through 128 lanes PCIe R© Gen4 I/O and 8 DDR4 memory channels (and up to 2DIMMs per
channel) running at up to 3200MT/s, boosting memory bandwidth up to 204GB/s Peak. The AMD
Rome processor supports up to 280W TDP per socket and a CPU clock speed up to 3.4Ghz Turbo
boost CPU clock speed.

Each SoC is built on top of up to 8 CCD (Core Complex Die also named Compute Core Die) with
a 7nm process technology and 1 centralized IOD (Input/Output Die) built through a 14 nm process
technology to improve NUMA effects. This topology is illustrated in Fig. 2. Each CCD is built on top
a 2 CCX (Core CompleX) and can host a maximum of 8 physical Zen2 cores. Up to 4 Zen2 cores per
CCX are sharing 16MB L3 cache while L1 (32KB data and 32 KB instruction) and L2 (512 KB data)

4

caches are dedicated per Zen2 core. In addition, each core can support SMT, allowing 2 execution
threads to execute simultaneously. Each CCD connects to memory, I/O, and each other through the
second generation of the AMD Infinity Fabric (Fig. 1), an AMD proprietary link interconnect provid-
ing balanced connection between all components on the SoC. All the cores on a single CCD access
memory space address through the same memory controller.

Figure 1: EPYC Rome CCD and CCX Block Diagram

On the compute side, the AMD Rome processor supports AVX2 or so called AVX256 (256 bits
width) which means Zen2 core can run AVX-256 instructions (ISA) in one clock. In term of instruc-
tions, the Zen2 core is able to support 2x (ADD, FMA) @256 bits, leading to sustain 16 floating-point
operations per second per core.

The AMD Rome SKU deployed at large scale on the Joliot-Curie Supercomputer is an off-SKU
roadmap called 7H12. The 7H12 SKU has 64 Zen2 cores, each running at 2.6GHz Base clock Speed
and up to 3.3 GHz when Turbo boost is enabled, with a maximum of 280W TDP. Each processor
is capable of delivering up to 2.66 TFLOP/s DP (Double precision) peak performance (Rpeak). It
supports 8 memory channels and up to 2 DIMMs per channel running at 3200 MT/s with 256 MB L3
shared cache and 64 KB (32+32) L1 and 512KB L2 dedicated cache per core. Its micro-architecture
is based on a 8 CCD MCM (Micro-Chips Module). Information relative to AMD EPYC 7H12 1

The AMD Rome EPYC are available either on single or dual sockets server. For a dual-sockets
server, like the ones deployed on Joliot-Curie supercomputer, two sockets are connected through
xGMI2 links providing up to 288 GB/s Peak bidirectional bandwidth maintaining 128 lanes PCIe R©Gen4
I/O available on the dual sockets platform providing up to 256 GB/s bidirectional bandwidth for I/O
capabilities. Each processor is partitioned into four logical quadrants, each being a NUMA domain.
There are 4 Numa domains Per Socket (NPS) and up to 8 Numa Domains per node as represented in
Fig. 2. Memory is interleaved across the two memory channels in each quadrant. PCIe devices will be
local to one of four NUMA domains on the processor depending on the quadrant of the IO die that
has the PCIe root for that device.

SPECrate2017 int base, SPECrate2017 int peak, SPECrate2017 fp base, SPECrate2017 fp peak
for AMD Rome SKU 7H12 numbers can be found below. They are extracted from spec.org2 with the
highest numbers demonstrated by Atos on the BULL Sequana XH2000 platform deployed at TGC-

1https://www.amd.com/fr/products/cpu/amd-epyc-7h12
2https://www.spec.org/cgi-bin/osgresults

5

Figure 2: NUMA configuation (left); Core topology (right) for the AMD Epyc Zen2 architecture.

C/CEA on the Joliot Curie supercomputer, thanks to the ability of the platform to cool properly and
efficiently the 7H12 AMD SKU.

Figure 3: SPECrate2017int and SPECrate2017fp AMD 7H12.

3.3 Intel Skylake 8168

The Intel R©Xeon R©“Skylake” Scalable Processor is the one of the last generations of Intel R©processor
implemented the eponym “Skylake” microarchitecture and designed with the same 14nm technology
process as its predecessor Intel R©Broadwell. However, it has enhanced computing capabilities thanks
to a higher core count (Max 28 vs 22), AVX-512 ISA support, a higher memory bandwidth due to
an increase by 50% of the memory channels (6 memory channels versus 4) supporting DDR4 up to
2667MT/s and a more balanced memory cache hierarchy compare to prior generations. It also has
more IO capabilities thanks to its 48 PCI-e lanes per socket, support PCI-e gen3 and also up to 3 high
speed, low-latency, Intel R©Ultra Path Interconnect (UPI) links. Intel R©UPI technology allows to inter-
connect processors in a coherent way at high speed (up to 10.4GT/s) to build multi-socket, NUMA
systems, up to 8 sockets in glueless mode and more than 8 sockets using proprietary node controller
(xNC). Supporting up to 2 (For Advanced RAS SKU Family) AVX-512 FMA (Fused Multiply-Add)
execution units, the processor delivers up to 32 double precision floating points operations per cycle,
leading to double the number of FLOP/s compared to Broadwell. Skylake support Intel R©Hyper-
Threading Technology (Intel R©HT Technology) which, when enabled, allows each core to support two
threads.

6

Figure 4: Skylake SP Block Diagram.

Intel R© Skylake processor has up to 28 cores, all interconnected through a mesh topology (interconnect-
on-die). It implements a more balance caching architecture than its predecessor and an improved
Instructions per Cycle (IPC): L1 (FLC - First Level Cache) and L2 (MLC - Mid Level Cache) are
dedicated cache per core: FLC is comprised of a 32 KB data cache (DCU) and a 32 KB instruction
cache (ICU) while MLC is reaching 1MB which is 4 times larger compared to Broadwell processor.
The L3 (LLC – Last Level Cache) is shared between all processors and up to 1.375MB per core. The
LLC is divided into multiple slices, cut and distributed on each of the cores. All of the slices are
interconnected together to form a single logical cache at the socket level.

Figure 5: Skylake SP Cache Structure.

The Intel R©Xeon R©Processor Scalable family will have 4 named shelves, namely, Platinum (81xx),
Gold (61xx and 51xx), Silver (41xx) and Bronze (31xx).

The Intel R©Skylake SKU (Stock Keeping Unit) deployed initially on the first phase of Joliot-Curie
Supercomputer is number 8168. The Intel R©Skylake 8168 has 24 cores, running each at 2.7GHZ at
the base non-AVX Core frequency, a shared 33MB LLC and a 205W nominal TDP. Each processor
is capable to deliver up to It is part 2 TFLOP/s DP Rpeak. It is part of the Platinum shelf which
supports advanced RAS features including SMT2, 3 UPI links and 2 AVX512 execution units – which
means that each core is capable during a single cycle to execute 2 instructions FMA (Fused Multiply
Add) or 4 double precision operations using a 512 bits vector width3.

3https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-processor-33m-cache-2-
70-ghz.html

7

Figure 6: Core topology for the Skylake 8168.

The turbo boost frequency depends of the number of active cores on the SKU and the use of AVX
instruction set. As a reminder, here are the frequency values to be expected for the Skylake 8168:

To be finished with node caracteristics.

Figure 7: AVX and Turbo Boost Frequencies for the Skylake 8168.

The Intel R©Skylake processor like 8168 from the Platinum shelve are dual-socket (2S - 2/3UPI),
quad-socket (4S- 2/3UPI), eight-socket 8S(3UPI) servers or even higher (up to 32-socket servers)
depending on proprietary NUMA implementation.

For a dual-socket server, like the ones deployed in Joliot-Curie supercomputer, the two 8168 sockets
are connected through 2 UPI links. The sustained memory bandwidth as measured with McCalpin
Stream benchmark “triad”4 is around 196GB/s per dual-socket node, i.e around 76.5% memory band-
width efficiency.

3.4 Marvell ThunderX2

The processor ThunderX2 is the second generation of Marvell 64 bits Armv8-A based processor based
on the 16nm process technology. All Marvell ThunderX2 SKUs are part of CN99XX products. It
has the capability to scale up to 32 custom Armv8.1 cores running at up to 2.5GHz, supporting also
Symmetric Multi-Threading (SMT) but twice number of threads compared to x86 processors like In-
tel or AMD. The ThunderX2 die is also built on top of monolithic implementation like all the Intel
processors up to the Intel Cascade lake generation at least, being the opposite way chosen by AMD to
have a MCP (Multi-Chip module implementation). For instance, one ThunderX2 core car support up
to 4 threads per core. Each processor supports up to 8 memory channels or 8 memory controllers with
up to 2 DPC (DIMM Per Channel), with DDR4 DIMMs running at up to 2667MT/s (1DPC only).
The processor has strong I/O capabilities with up to 56 PCI-e gen3 lanes and 14 PCIe controllers
along with integrated IO and SATAv3 ports. Each ThunderX2 has a dedicated L1 cache (32 KB
instruction and data cache) and a dedicated 256KB L2 cache per core. The L3 cache is 32 MB and is
distributed among the 32 cores. In term of computation, the Marvell ThunderX2 supports AVX1 or
AVX128 bits and up to 2 FMA execution units which means that each core is capable during a single
cycle to execute 2 instructions FMA (Fused Multiply Add) using a 128 bits vector width. This led to
one core being capable to run 8 DP floating operations per second.

The Marvell ThunderX2 socket is available either on single- or dual-socket server. For a dual-
socket server, like the ones deployed on the INTI cluster, two sockets are connected through Cavium
Coherent Processor Interconnect (CCPI2TM) with a 75GB/s theoretical throughput between the 2
ARM sockets. CCPI2 provides full cache coherency within a bi-sockets node.

The Marvell ThunderX2 SKU deployed on INTI ARM prototype is based on ARMv8 architecture
with 32 cores, each core running at 2.2GHz, reaching a 0.56 TFlops/s theoretical DP peak performance
(Rpeak). It has a theoretical memory bandwidth around 340GB/s, with a sustained stream triad value
higher than 241 GB/s, leading to an efficiency around 70%.

4https://www.cs.virginia.edu/stream/

8

Figure 8: Marvell ThunderX2 Block Diagram.

4 Results

This section will present the results obtained with the two codes YALES2 and AVBP on the three
processors introduced in section 3. The main goal was to enable the characterization of each code on
each technology to understand which component (memory bandwidth, NUMA effects, etc.) has an
influence on the performance. In particular, the following characteristics have been studied.

• Application’s Sensitivity to micro-architecture implementations such as L3 (or LLC) cache ac-
cess, the memory bandwidth, the inter-processor communication or the raw processor perfor-
mance.

• Application’s Scalability. For YALES2, the main target is of these measurements is the Poisson
solver, with a more specific insight on the deflation part.

As a first step towards, the McAlpin STREAM benchmark has been used to help understanding
the best placement strategy to implement moreover for applications that are sensitive to memory
(memory bound codes).

4.1 STREAM Benchmark

STREAM is the industry standard benchmark for measuring sustained memory bandwidth5

Running Stream benchmark on each micro-architecture is part of our methodology to qualify code
memory bandwidth dependency, first understanding the best process placement to achieve the best
memory bandwidth performance.

4.1.1 AMD EPYC 7H12

The Tab. 1 shows the results of the McCalpin Stream benchmark obtained on the AMD EPYC 7H12
SKU which has a total of 64 cores (1 processor x 64 cores). Single socket configurations with 1, 2, 4,
8, 16, 32 and 64 cores have been tested with 1 thread by core, i.e. without SMT. The results obtained
for the 3 sub-tests that involves loads and stores (’Scale’, ’Add’ and ’Triad’) are almost identical and
lie inside the repeatability variations which were less than 2%. As already mentioned, the EPYC 7H12
SKU is composed of 8 CCD which are grouped in 4 NUMA nodes and each NUMA node shares 2
memory channels. It can thus be anticipated that the thread placement will have a major influence
on the measured bandwidth. Two specific placement strategies have been tested in the present work:
either compact which places the threads on contiguous CPU cores and scattered which put the threads

5http://www.cs.virginia.edu/stream/ref.html

9

as far as possible from one another. In the first case, the first 4 threads are always on the same CCX,
the first 8 threads are on the same CCD and the first 16 threads are on the 2 CCD that belong to
the same NUMA node. The cases with 32 and 64 threads are then composed of 2 and 4 full NUMA
nodes respectively. In the second case, there is only 1 core by CCD up to 8 cores. Then starting from
16 cores all the CCX contains the same amount of active cores (1 by CCX for 16 cores, 2 by CCX for
32 cores and finally 4 by CCX for 64 cores). When the socket is full, both placement strategies are
identical.

As expected, the compact and scattered placement strategies provide different results. With the
compact strategies, the BW does not increase significantly as long as the active cores remain bind
to the first NUMA node (Up to 8): only 2 memory controllers can provide data to these cores while
thee bandwidth increased significantly in the scattered mode as all cores (up to 8) benefit each from
2 memory controllers.

The measured bandwidth reaches 169GB/s when 16 cores of a single socket are used in scattered
mode, leading to a 82% efficiency of the memory controllers on the 7H12 in comparison to the maximal
theoretical bandwidth which is 204.8GB/s. It must also be seen that the bandwidth with 8 and 32
scattered cores is nearly identical. There is a small but noticeable drop in performance when the 64
cores of the socket are used (approximately 5%). This engages to study the behavior of applications
which are memory bound when the socket is partially depopulated.

It should also be noted that these results are only achievable when the non-temporal stores are
enabled. If not, the maximum achievable bandwidth is only 120 GB/s. At present time, only two
compilers provide this option: the Intel (2019.0.5) and the AOCC (2.1.0) suites. Please note that the
default behavior of both compilers is different: non-temporal stores are enabled with Intel compiler
but disabled with AOCC.

The binaries have been obtained with the following compilation command lines:

> icc -DNTIMES =200 -DSTREAM_ARRAY_SIZE =80000000 -O3 -march=core -avx2 -qopenmp stream.

c -o stream.amd.icc_ntsore_enabled

> icc -DNTIMES =200 -DSTREAM_ARRAY_SIZE =80000000 -O3 -march=core -avx2 -qopenmp -qopt -

streaming -stores=never stream.c -o stream.amd.icc_ntsore_disabled

> cclang -9 -DNTIMES =50 -DSTREAM_ARRAY_SIZE =80000000 -O3 -march=znver2 -fopenmp -fnt -

store=aggressive stream.c -o stream.amd.aocc_ntsore_enabled

> cclang -9 -DNTIMES =50 -DSTREAM_ARRAY_SIZE =80000000 -O3 -march=znver2 -fopenmp stream

.c -o stream.amd.aocc_ntsore_disabled

Ncores total BW BW/core Ncores total BW BW/core
compact [GB/s] [GB/s] scattered [GB/s] [GB/s]

1 32.0 32.0 1 32.0 32.0
2 39.3 19.7 2 62.7 31.4
4 37.7 9.43 4 123.5 30.9
8 36.3 4.53 8 168.4 21.1

16 40.6 2.54 16 169.0 10.5
32 81.0 2.53 32 167.3 5.22
64 161.3 2.52 64 161.3 2.52

Table 1: Stream Triad McAlpin Benchmark’s results - AMD EPYC 7H12 socket

4.1.2 Marvell CN9980-2200

The Tab. 2 shows the results of the McCalpin Stream benchmark obtained on an Marvell CN9980-2200
bi-scokets node which has a total of 64 cores (2 processors x32 cores). A single socket configuration
have been tested with 1 thread by core (no SMT) with 1, 2, 4, 8, 16 and 32 cores. Our measurements
have confirmed that the thread placement has no influence on the bandwidth on this architecture.

10

Ncores total BW BW/core
[GB/s] [GB/s]

1 18.5 18.50
2 34.4 17.20
4 64.2 16.05
8 107.2 13.40

16 114.8 7.18
32 121.4 3.79

Table 2: Stream Triad McAlpin Benchmark’s results - Marvell TX2 CN9980-2200 bi-sockets node.

4.1.3 General comments and conclusions

4.2 CFD Benchmarks description

4.2.1 YALES2

The selected benchmark for the YALES2 solver is the well-known PRECCINSTA burner [7, 14, 9,
12, 1]. It is a semi-industrial burner which is relevant for the aeronautical combustion applications.
In the present study, it is operated in isothermal conditions: only the constant-density flow solver
will be used. This benchmark is available on 3 different meshes (noted here M1, M2 and M3) which
contains respectively 14M, 110M and 878M cells. Each mesh is actually obtained from the previous
one by performing an homogeneous mesh refinement. In all cases the cell-group size has been set
to 2’000 which is very close of the optimum for all the platforms. All the data presented below are
obtained for a simulation of 200 time-steps: depending on the mesh size, the targeted machine and
on the number of cores, the simulation time was between 1 minute and 30 minutes which is sufficient
to obtain significant statistics. All the presented data have been obtained by the embedded timers
of YALES2 which provide a flexible instrumentation of specific parts of the code. These embedded
timers are based on the RDTSC instruction on x86 64 and MPI WTIME on ARM architectures.

4.2.2 AVBP

Initial performance tests for characterization and porting were performance using a 3M cells PREC-
CINSTA case. The selected benchmarks for strong scaling for AVBP are the BKD burner from DLR
[6] consisting of 42 injectors used in a collaboration between Thomas Schmitt (EM2C-CNRS) and
Cerfacs on a current grand challenge[15] in the IRENE Rome system using a 1.4B tetrahedras mesh
and a 1B tetrahedras turbulent channel. For weak scaling a simple turbulent channel case was use
with XXX meshes (1.2M, 10.2M, 82.2M and 314M respectively). Each mesh is obtained from the
previous one using a uniform refinement constraints and the MMG library [3]. Measurements where
performed at least 5 times to evaluate variability and each simulation last between 30s to 5min. The
results reported here are the worst case scenario observed. The data was obtained by embedded timers
using MPI WTIME.

4.3 Code characterization

4.3.1 Best practices

4.3.2 YALES2

Porting the YALES2 code to AMD was straightforward. The compilation options are listed below:
Intel:

• -align array64byte -align rec32byte -unroll-aggressive

• export I MPI FABRICS=shm:ofa

AMD:

11

• -align array64byte -align rec32byte -unroll-aggressive

• export MKL DEBUG CPU TYPE=5

• export I MPI FABRICS=shm:ofa

TX2:

• stream: armclang -DSTREAM ARRAY SIZE=100000000 -O3 -fopenmp -march=armv8.1-a -
mcpu=native -fsimdmath -ffp-contract=fast stream.c -o stream

The default parallel environment is the following:

• openmpi/4.0.2 (default options).

• ucx/1.7.0

• hcoll/4.4.2938

4.3.3 AVBP

Porting the AVBP code to AMD was straightforward. To all for universal binaries since the filesystem
of IRENE Rome is shared with the IRENE Skylake and IRENE KNL platforms, the -O3 -mavx2
-axCORE-AVX2 -fma compiler flags were use with the intel compiler 2019.0.5.281. The default envi-
ronment for our tests unless stated otherwise is:

• openmpi/4.0.2 (default options).

• ucx/1.7.0

• hcoll/4.4.2938

4.3.4 Methodology

Contrary to the Intel and Thunderx architectures, process placement on the CCX and CCD of an
AMD processor can yield dramatic consequences for performance of a code. Indeed as described in
the previous sections, L3 cache and memory bandwidth are not uniform for all process. In order to
characterize the dependency of the code to memory bandwidth it is possible to place processes so as
to double the available L3 cache or memory bandwidth thus measuring their importance of the code.
Using the script bellow, we can control the stride and group size of process placement within a CCX
and CCD. For example ...

export OMPI_MCA_hwloc_base_report_bindings =1

binding options

GROUPSIZE =2

STRIDE =4

ENDCPU =127

LISTCPU=$(for i in $(seq 0 $STRIDE $ENDCPU);do printf $(seq -s"," $i 1 $(($i+${

GROUPSIZE }-1)));printf ",";done |sed ’s/.$//’)

MY_SLURM_OPTS="--ntasks -per -node=$NTASKS_PER_NODE --cpu -bind=verbose ,map_cpu:$LISTCPU

--distribution=block"

ccc_mprun -l -E "$MY_SLURM_OPTS" ./exec

4.3.5 YALES2

The Fig. 9 present the results obtained on the YALES2 code, following the procedure explained above.
Only the cases labeled 3, 4 and 5 have been used to obtain the presented results.

12

49%

33%

18%

YALES2 Characterization on AMD ROME
Without MPI effects

Bandwidth Cache effect Computation

Yales2

Figure 9: Characterization of YALES2 on AMD Rome architecture.

Figure 10: left: Characterization of AVBP sur architecture AMD. Right: Measured bandwidth during
the simulation

4.3.6 AVBP

Code characterization using the placement strategy described previously is shown in figure10. It
suggests that AVBP is compute bound (60%) which concurs with developers experience who know
well the influence of CPU clock speed on simulation times. This is also confirmed using the turbo mode
(which is enabled by default on the Joliot-Curie AMD Rome partition for all these tests). Disabling it
(via the module feature/system/turbo off provided by the system) reduced AVBP code’s efficiency by
10% in average with a turbo mode frequency sets to off. Bandwidth measurements during runtime were
performed using AMDuProf tool. 6. A max usage of 150GB/s confirms that AVBP does not saturate
the available bandwidth of the node (409,6GB/s). The influence of memory bandwidth on AVBP is
around 27%. This confirm that AVBP is not Bandwidth driven. However the moderate impact shows
that the code will be sensitive to the core count and process placement. The architecture will impact
performance if the core count continues to increase and bandwidth does not.

4.4 Parallel performances

4.4.1 Methodology

4.4.2 YALES2

The YALES2 strong and weak scaling measurements are presented in Fig. 11. This figure gives the
Reduced Computational Time, i.e. the time spent in the temporal loop per iteration and per node.

6https://developer.amd.com/amd-uprof/

13

Figure 11: Scaling performance for YALES2 on Joliot Curie AMD for the PRECCINSTA burner at
various resolutions. TL: total, DEFL: linear solving of the Poisson equation with the DPCG, LSAR:
Allreduce communications in the linear solver (included in DEFL), REST: rest of the temporal loop.

This number is normally constant for an ideal speed-up. The different curves of the figure represent
the different parts of the temporal loop. It can be observed that the weak scaling, i.e. with a constant
load per core is good. The strong scaling however is not ideal.

4.4.3 AVBP

The AVBP strong scaling measurements were performed using openmpi 4.0.2 and flat MPI (1 MPI
per core) on full nodes (128 cores). Domain decomposition mapping where pre-computed to avoid
collective operations crashes observed with Parmetis on more than 4000 mpi tasks. Measurement
include the full temporal loop of the code but do not account for the initialization phase which takes
up less than 1% of the compute time of any simulation and therefore is not relevant. No online co-
processing was used during this tests and only a final check-pointing file was written in the finalization
phase. I/O is not included in the timing measurements. For weak-scaling, the same setup applies.
Additionally, intelmpi 2019.0.5.281 was also tested as well as under-subscribing the nodes with only
one core over two used. Figure 12 shows the results. Strong scaling is excellent for both use cases.
Weak scaling shows a very good behavior up to 32k cores. The increasing trend in RCT is explained by
the duplicated nodes in the parallel interfaces. Overall openmpi 4.0.2 offers a better performance than
intelmpi in this system (Disclaimer : intelmpi parameters have not been optimized for this tests). On
one node, openmpi is 10% faster, on 250% almost 50% when running on full nodes. Under-subscribing
improves RCT by 30% and this constant even if we increase the number of nodes and mesh size. Given
the strong scaling performance of the code at full nodes, we only recommend under-subscribing if mpi
load in-balance is over 30%.

14

Figure 12: Left: Strong scaling performance for AVBP on Joliot Curie AMD. Turbulent channel LES
(circle); Reactive rocket engine LES (triangles) versus respective ideal acceleration (line). Right: Weak
scaling for a turbulent channel LES versus MPI library and process placement

.

5 Conclusion

6 Acknowledgments

We would like to thank GENCI and TGCC/ CEA for their support by providing the CFD com-
munity 850’000 computing hours on the Tiers 0 Joliot-Curie Supercomputer built on top of 2292
AMDx86 7H12 dual-socket nodes embedded in an extremely high energy efficient Atos/Bull Sequana
XH2000 Platform. The research regarding AVBP leading to these results has received funding from
the European Union’s Horizon2020 research and innovation program under the EPEEC project, grant
agreement No 801051 as well support by EXCELLERAT project which has received funding from
the European Union’s Horizon 2020 research and innovation programme under grant agreement No
823691.”.

References

[1] P. Benard, G. Lartigue, V. Moureau, and R. Mercier. Large-Eddy Simulation of the lean-premixed
PRECCINSTA burner with wall heat loss. Proceedings of the Combustion Institute, 000:1–11,
2019. ISSN 15407489.

[2] M. Bernard, G. Lartigue, G. Balarac, V. Moureau, and G. Puigt. A framework to perform
high-order deconvolution for finite-volume method on simplicial meshes. International Journal
for Numerical Methods in Fluids, in press(n/a), 2020. doi: 10.1002/fld.4839. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/fld.4839.

[3] C. Dapogny, C. Dobrzynski, and P. Frey. Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems. Journal of Computa-
tional Physics, 262:358 – 378, 2014. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2014.01.
005. URL http://www.sciencedirect.com/science/article/pii/S0021999114000266.

[4] F Ducros, F Nicoud, and T Poinsot. Wall-adapting local eddy-viscosity models for simulations
in complex geometries. Numerical Methods for Fluid Dynamics VI, pages 293–299, 1998.

[5] Massimo Germano, Ugo Piomelli, Parviz Moin, and William H Cabot. A dynamic subgrid-scale
eddy viscosity model. Physics of Fluids A: Fluid Dynamics (1989-1993), 3(7):1760–1765, 1991.

[6] Stefan Gröning, Justin Hardi, Dmitry Suslov, and Michael Oschwald. Influence of hydrogen
temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen.
CEAS Space Journal, 9(1):59–76, Mar 2017. ISSN 1868-2510. doi: 10.1007/s12567-016-0130-8.
URL https://doi.org/10.1007/s12567-016-0130-8.

15

https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4839
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4839
http://www.sciencedirect.com/science/article/pii/S0021999114000266
https://doi.org/10.1007/s12567-016-0130-8

[7] G. Lartigue, U. Meier, and C. Bérat. Experimental and numerical investigation of self-excited
combustion oscillations in a scaled gas turbine combustor. Applied Thermal Engineering, 24
(11-12):1583 – 1592, 2004.

[8] M. Malandain, N. Maheu, and V. Moureau. Optimization of the deflated conjugate gradient
algorithm for the solving of elliptic equations on massively parallel machines. J. Comp. Physics,
238:32–47, 2013. URL http://dx.doi.org/10.1016/j.jcp.2012.11.046.

[9] W. Meier, P. Weigand, X.R. Duan, and R. Giezendanner-Thoben. Detailed characterization of the
dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combustion and Flame,
150(1-2):2 – 26, 2007.

[10] V. Moureau, G. Lartigue, Y. Sommerer, C. Angelberger, O. Colin, and T. Poinsot. Numerical
methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J.
Comp. Physics, 202:710–736, 2005. URL http://dx.doi.org/10.1016/j.jcp.2004.08.003.

[11] V. Moureau, P. Domingo, and L. Vervisch. Design of a massively parallel cfd code for complex
geometries. Comptes Rendus Mécanique, 339(2-3):141–148, 2011. URL http://dx.doi.org/10.

1016/j.crme.2010.12.001.

[12] V. Moureau, P. Domingo, and L. Vervisch. From large-eddy simulation to direct numerical
simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modelling. Comb. and
Flame, 158:1340–1357, 2011. doi: doi:10.1016/j.combustflame.2010.12.004. URL http://dx.

doi.org/10.1016/j.combustflame.2010.12.004.

[13] Franck Nicoud, Hubert Baya Toda, Olivier Cabrit, Sanjeeb Bose, and Jungil Lee. Using singular
values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23(8):085106,
2011.

[14] S. Roux, G. Lartigue, T. Poinsot, U. Meier, and C. Berat. Studies of mean and unsteady flow
in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Comb.
Flame, 141(1-2):40–54, 2005.

[15] T. Schmitt, G. Staffelbach, S. Ducruix, S. Gröning, J. Hardi, and M. Oschwald. Large-eddy
simulations of a lab-scale liquid rocket engine: influence of fuel injection temperature on thermo-
acoustic stability. In 7th European Conference for Aeronautics and Space Sciences (eucass 2017),
Italy, 2017. Politecnico Milano.

16

http://dx.doi.org/10.1016/j.jcp.2012.11.046
http://dx.doi.org/10.1016/j.jcp.2004.08.003
http://dx.doi.org/10.1016/j.crme.2010.12.001
http://dx.doi.org/10.1016/j.crme.2010.12.001
http://dx.doi.org/10.1016/j.combustflame.2010.12.004
http://dx.doi.org/10.1016/j.combustflame.2010.12.004

	Introduction
	Overview of the CFD codes
	YALES2
	AVBP

	Presentation of the three tested architectures
	SuperComputing Platforms
	AMD EPYC 7H12
	Intel Skylake 8168
	Marvell ThunderX2

	Results
	STREAM Benchmark
	AMD EPYC 7H12
	Marvell CN9980-2200
	General comments and conclusions

	CFD Benchmarks description
	YALES2
	AVBP

	Code characterization
	Best practices
	YALES2
	AVBP
	Methodology
	YALES2
	AVBP

	Parallel performances
	Methodology
	YALES2
	AVBP

	Conclusion
	Acknowledgments

