

Stability of a semi-implicit compressible cavitation solver (CPS) in YALES2

Himani GARG, Giovanni GHIGLIOTTI, Guillaume BALARAC

Cavitation model: Single fluid model (mixture of liquid and vapor in two phase regions)

According to Barotropic law: $p = f(\rho)$

We decouple the energy equation from system of equations, and solve only continuity and momentum equation

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{\mathbf{u}}) = 0$

$$\frac{\partial \rho \bar{\mathbf{u}}}{\partial t} + \nabla \cdot (\rho \bar{\mathbf{u}} \otimes \bar{\mathbf{u}}) = -\nabla p + \nabla \cdot \bar{\bar{\tau}}$$
$$\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E \bar{\mathbf{u}}) = -\nabla \cdot (p \bar{\mathbf{u}}) + \nabla \cdot (\bar{\bar{\tau}} \bar{\mathbf{u}}) + \nabla \cdot$$

Sarkar P. (2019). "Simulation of cavitation erosion by a coupled CDF-FEM approach" Theses, https://tel.archives-ouvertes.fr/tel-02267374

<i>m</i> .				
	 	 _	_	
				l
				l
				ļ
				l
				l
				1

Objective: to study cavitating flows behind obstacles

Problem: Code is highly unstable in the presence of cavitation!!!

Discretization of steep gradients in time and space accurately!

and outlet boundary conditions.

Observations/Acheievements:

- Put some limiters on density/pressure, to avoid negative values and results in non-oscillatory behavior.
- Ultimately, cavitating flow behind an obstacle is observed.

Ongoing work

Observations/Implementations:

• Despite these stability parameters, we have observed that between one iteration to another, the code is unstable, due to sudden increase in velocity (locally, at a single node)

