Numerical prediction of wind turbine wakes using adaptative mesh refinement

Why?

- Harvesting of wind energy produced by large wind farms = source of clean and renewable energy
- —> Maximizing the electrical power of windfarms is a key issue.
- Power production and fatigue loads related to wind or wake coming from an upstream generator

Challenges?

Wakes —> complex 3D unsteady flow phenomena —> high computational cost

Objectives?

- Demonstrate the feasibility of AMR for wind turbine wake prediction
- Determinate mesh adaptivity parameters ensuring a good compromise between accuracy and computing time

Visualization of the dynamic mesh adaptation

Adaptation strategies

Static adaptation based on flow statistics

$$Qc_1 = \Delta^2 \max_{i,j=1,2,3} \left\{ \left| \frac{\partial^2 \mathbf{u}_j^*}{\partial x_i^2} \right| \right\}.$$

$$Qc_2 = \frac{E_{sgs}}{E_{sgs} + E_R}$$

[Bénard et al. in Int. J. Numer. Meth. Fluids (2015)

$$Qc_1 = f(ncells\ ratio) \quad Qc_2 = 0.2$$

$$\rightarrow h_{local}$$

Dynamic adaptation based on vorticity

$$\omega_{max} = \frac{\Gamma}{\pi \epsilon^2}$$

$$\Gamma = 0.5 C_L c R U_{inf}$$

$$h_{blade} = \frac{R}{32}$$

$$\downarrow$$

$$\omega_{local} > k \omega_{max}$$

$$\rightarrow h_{local} \le h_{blade}$$

Trigger = f(error_metric)

Static adaptation based on flow statistics

- Mesh adaptivity parameters: QC1 value or ncells ratio and QC2 value
- Number of adaptation steps: depends on metric error

Use level set for masking

Mask

- Tower and nacelle wall modeled
- use the level set to limit the number of cells in these regions
- No mesh adaptation in black regions

Static adaptation based on flow statistics

Step 1 : 1.3M cells

Static adaptation based on flow statistics

Dynamic adaptation based on vorticity

Vorticity

- Mask based on the voriticity
- Reduce the mask and use mask propagation instead

Mask $\omega_{local} > 1 \% \, \omega_{max}$

Perspective: wind turbine with yaw

